Front Page News

A new study by Sam Lo et al. from the Centre for Space at the University of Bath entitled "A Systematic Study of 7 MHz Greyline Propagation Using Amateur Radio Beacon Signals" was just published in the peer-reviewed journal Atmosphere. Abstract: This paper investigates 7 MHz ionospheric radio wave propagation between pairs of distant countries that simultaneously lie on the terminator. This is known as greyline propagation. Observations of amateur radio beacon transmitters recorded in the Weak Signal Propagation Reporter (WSPR) database are used to investigate the times of day that beacon signals were observed during the year 2017. The WSPR beacon network consists of thousands of automated beacon transmitters and observers distributed over the globe. The WSPR database is a very useful resource for radio science as it offers the date and time at which a propagation path was available between two radio stations, as well as their precise locations. This paper provides the first systematic study of grey-line propagation between New Zealand/Eastern Australia and UK/Europe. The study shows that communications were predominantly made from the United Kingdom (UK) to New Zealand at around both sunset and sunrise times, whereas from New Zealand to the UK, communication links occurred mainly during UK sunrise hours. The lack of observations at the UK sunset time was particularly evident during the UK summer. The same pattern was found in the observations of propagation from Eastern Australia to UK, and from New Zealand and Eastern Australia to Italy and the surrounding regions in Europe. The observed asymmetry in reception pattern could possibly be due to the increase in electromagnetic noise across Europe in the summer afternoon/evening from thunderstorms. URL: https://www.mdpi.com/2073-4433/13/8/1340

Congratulations to Sam Lo and the entire team!

Dr. Frank Howell K4FMH will present a seminar based on his two-part article in the July & August 2022 issues of the Radio Society of Great Britain’s RadCom journal, written with Dr. Scott McIntosh of NCAR in Colorado, titled, “On the Cusp of a Scientific Revolution?” The seminar includes the latest theory construction and model estimation. The seminar will be held on September 1, 2022 at 4 PM Eastern (2000z) during the weekly Solar Eclipse QSO Party Zoom Telecon. Frank is Professor Emeritus at Mississippi State University, Affiliated Faculty at Emory University, and a scientific member of HamSCI.

The Solar Eclipse QSO Party (SEQP) is coming back! Two solar eclipses will be traversing the continental United States over the next two years: an annular solar eclipse on October 14, 2023 and a total solar eclipse on April 8, 2024.  These eclipses are going to be the last solar eclipse traversing the continental United States until 2044, and therefore this is our chance to both have some fun on the radio and study these amazing events! During a solar eclipse, the shadow of the moon creates temporary night-like conditions on Earth. This causes the ionosphere to weaken and the atmosphere to cool, therefore causing changes in ionospheric radio propagation. On August 21, 2017, HamSCI coordinated the first Solar Eclipse QSO Party, a ham radio contest-like event that produced data used to study the impact of the eclipse on the ionosphere. HamSCI is planning on have two more SEQPs, one for each of the upcoming solar eclipses. If you would like to help plan for these exciting events and be part of the science team, join us every week on Thursdays at 4 PM Eastern starting September 1, 2022 on our Zoom telecon.

The HamSCI teams at the University of Scranton W3USR and Case Western Reserve University W8EDU were recently awarded a 3-year collaborative National Science Foundation grant to study impacts of the 2023 and 2024 Solar Eclipses on the ionosphere, as well as ionospheric variability that occurs during every day dawn and dusk. The project will be led by Nathaniel Frissell, W2NAF at Scranton and David Kazdan AD8Y, John Gibbons N8OBJ, Rachel Boedicker AC8XY, and Christian Zorman at Case Western. Kristina Collins KD8OXT, Bill Engelke AB4EJ, Steve Cerwin WA5FRF, Phil Erickson W1PJE, Mary Lou West KC2NMC, Bob Gerzoff WK2Y, Rachel Frissell W2RUF, and the entire HamSCI Grape Personal Space Weather Station team played a significant role in winning this grant. NSF funding will provide for about thirty Personal Space Weather Station Grape receivers to be deployed throughout North America. Their locations will be optimized to study the ionospheric impacts simultaneously received from WWV (Fort Collins, CO) on 5 and 10 MHz and CHU (Ottawa, Canada) on 3.33, 7.85, or 14.67 MHz. The HamSCI amateur radio community will be able purchase and field additional stations. All stations will run continuously from deployment through at least the end of the project, and will capture the 2023 and 2024 eclipses. If you would like to participate, please join our Google Group and weekly Grape telecons!

As Solar Cycle 25 begins, amateur radio operators look forward to the return of the exciting propagation conditions associated with solar maximum. The classic paradigm for solar cycle prediction is based on an 11-year sinusoidal pattern of sunspot numbers, with an official NASA-NOAA "consensus" prediction coming from a panel of experts evaluating an ensemble of different types of models. However, the underlying solar cycle mechanism is still not well understood and this consensus prediction can fall short. Scott McIntosh at the U.S. National Center of Atmospheric Research (NCAR) and his team have recently published a new method for predicting the time and amplitude of solar maximum, based on changes in the observed magnetic polarity in different regions of the sun. This new method predicts a stronger Solar Cycle 25 than the NASA-NOAA "consensus" prediction. HamSCI member Frank Howell K4FMH teams up with Dr. McIntosh to review this new methodology and its potential impacts on how we think about solar cycle predictions in a two-part article series currently featured on the cover of RSGB's RadCom magazine. More information can also be found at Frank's blog.

In November 2021, Dr. Martin Archer asked the HamSCI and Amateur Radio Community for help in determining the best way to sonify ultra low frequency (ULF) plasma waves measurements. Those results have just been published! From Dr. Archer:

"Our sense of sound can be a powerful tool in exploring and analysing data collected from satellites. But what is the best way to make this data audible? Space science researchers at Imperial College London asked for your input on which methods of making the sounds of near-Earth space audible produce the best results. We’re pleased to announce that the results of this survey have now been published in Frontiers in Astronomy and Space Sciences. The feedback was invaluable, providing clear recommendations on which methods were best. These are now being used by space scientists around the world to improve their science communication, public engagement, and citizen science. Thank you!"

HamSCI played a major role at the 2022 Dayton Hamvention, which was held in Xenia, Ohio May 20-22, 2022 at the Green County Fairgrounds The Dayton Hamvention is sponsored by the Dayton Amateur Radio Association and is the world's largest ham radio gathering, with over 32,000 attendees at the 2019 Hamvention. The Hamvention is an extremely important event for engaging with the amateur radio community, sharing ideas, developing collaborations, and sharing scientific results. This year, HamSCI hosted a booth, gave presentations in the Ham Radio 2.0 area, and hosted a forum. Support for the 2022 HamSCI Hamvention activities comes from The University of Scranton, the Yasme FoundationTAPR, the National Science FoundationNASA, and volunteers like you. This year, HamSCI will again host a booth in building 5 next TAPR, host booth talks in the Ham Radio 2.0 area, run demos, and the host HamSCI Forum.

A description of the hardware of the Grape Version 1 Personal Space Weather Station by John Gibbons N8OBJ, Kristina Collins KD8OXT, David Kazdan AD8Y, and Nathaniel Frissell W2NAF was published in the journal Hardware-X, entitled Grape Version 1: First prototype of the low-cost personal space weather station receiver. The full paper is available from https://doi.org/10.1016/j.ohx.2022.e00289.

A team of HamSCI researchers led by Nathaniel Frissell W2NAF just published a new article, First Observations of Large Scale Traveling Ionospheric Disturbances Using Automated Amateur Radio Receiving Networks, in the American Geophysical Union journal Geophysical Research Letters. The article looks at an event from November 3, 2017 to demonstrate how a large-scale disturbance moving through the ionosphere can affect the communications distances on the 14 MHz (20 m) amateur radio band. On this day, a 2.5 hour oscillation could be seen in the minimum distance of 14 MHz contacts recorded by the Reverse Beacon Network (RBN)Weak Signal Propagation Reporter Network (WSPRNet), and PSKReporter.

A call for abstracts is now open for the 2022 HamSCI Workshop, which will be hybrid in-person and virtual March 18-19, 2022 at The U.S. Space and Rocket Center Educators Training Facility in Huntsville, Alabama. Abstracts are due February 1, 2022. The primary objective of the HamSCI workshop is to bring together the amateur radio community and professional scientists. This year's theme is The Weather Connection, with invited speakers Dr. Tamitha Skov WX6SWW and Mr. Jim Bacon G3YLA presenting tutorials on the impacts of both space and terrestrial weather on the ionosphere, and a keynote presentation by Dr. Chen-Pang Yeang on Ham Radio and the Discovery of the Ionosphere. We welcome abstract submissions related to development of the Personal Space Weather Station, ionospheric science, atmospheric science, radio science, space weather, radio astronomy, and any science topic that can be related to space science and/or the amateur radio hobby.