@proceedings {835, title = {Comparative Analysis of Medium Scale Travelling Ionospheric Disturbances: Grape PSWS vs. SuperDARN }, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are periodic fluctuations in ionospheric electron density associated with atmospheric gravity waves. They are characterized by wavelengths of 50-500 kilometers and periods of 15-60 minutes. This study presents initial findings from a comparative analysis of MSTID observations sourced from two distinct systems: the Super Dual Auroral Radar Network (SuperDARN) and the Grape Personal Space Weather Station (PSWS). The Grape PSWS, developed by the Ham Radio Science Citizen Investigation (HamSCI), is a small ground-based remote sensing device aimed at monitoring space weather parameters, including MSTIDs. It achieves this by monitoring a 10 MHz transmission from WWV, a National Institute of Standards and Technology (NIST) time standard station located near Fort Collins, Colorado, USA. In contrast, SuperDARN comprises a global network of high-frequency radars that offer extensive coverage of ionospheric plasma motion. This comparative investigation focuses on aligning MSTID observations obtained from Grape PSWS data with SuperDARN radar data. By investigating datasets from both platforms, these findings serve as initial results for an ongoing investigation of MSTIDs, laying the groundwork for a comprehensive understanding of their dynamics and impacts on ionospheric variability and space weather.

}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Bharat Kunduri and J. Michael Ruohoniemi and Joseph Baker and William Liles and John Gibbons and Kristina Collins and David Kazdan and Rachel Boedicker} } @conference {544, title = {HamSCI Personal Space Weather: Architecture and Applications to Radio Astronomy}, booktitle = {Annual (Summer) Eastern Conference}, year = {2021}, month = {07/2021}, publisher = {Society of Amateur Radio Astronomers (SARA)}, organization = {Society of Amateur Radio Astronomers (SARA)}, address = {Virtual}, abstract = {

The Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project is a citizen science initiative to develop a new modular set of ground-based instrumentation for the purpose of studying the structure and dynamics of the terrestrial ionosphere, as well as the larger, coupled geospace system. PSWS system instrumentation includes radio receivers sensitive to frequencies ranging from the very low frequency (VLF) through very high frequency (VHF) bands, a Global Navigation Satellite System (GNSS) receiver to provide Total Electron Content (TEC) measurements and serve as a precision time and frequency reference, and a ground magnetometer sensitive to ionospheric and geospace currents. Although the PSWS is designed primarily for space weather and space science, its modular and open design in both hardware and software allows for a variety of use cases. The core radio instrument of the PSWS, the TangerineSDR, is a wideband, direct sampling 100~kHz to 60~MHz field programmable gate array (FPGA)-based software defined radio (SDR) receiver with direct applicability to radio astronomy. In this paper, we describe the PSWS and TangerineSDR architecture, show examples of how the TangerineSDR could be used to observe Jovian decametric emission, and discuss the applicability of the TangerineSDR to radio astronomy in general.

}, url = {https://rasdr.org/store/books/books/journals/proceedings-of-annual-conference}, author = {Nathaniel A. Frissell and Scott H. Cowling and Thomas C. McDermott and John Ackermann and David Typinski and William D. Engelke and David R. Larsen and David G. McGaw and Hyomin Kim and David M. Witten, II and Julius M. Madey and Kristina V. Collins and John C. Gibbons and David Kazdan and Aidan Montare and Dev Raj Joshi and Veronica I. Romanek and Cuong D. Nguyen and Stephen A. Cerwin and William Liles and Jonathan D. Rizzo and Ethan S. Miller and Juha Vierinen and Philip J. Erickson and Mary Lou West} } @conference {540, title = {HamSCI Personal Space Weather Station (PSWS): Architecture and Current Status}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Recent advances in geospace remote sensing have shown that large-scale distributed networks of ground-based sensors pay large dividends by providing a big picture view of phenomena that were previously observed only by point-measurements. While existing instrument networks provide excellent insight into ionospheric and space science, the system remains undersampled and more observations are needed to advance understanding. In an effort to generate these additional measurements, the Ham Radio Science Citizen Investigation (HamSCI, hamsci.org) is working with the Tucson Amateur Packet Radio Corporation (TAPR, tapr.org), an engineering organization comprised of volunteer amateur radio operators and engineers, to develop a network of Personal Space Weather Stations (PSWS). These instruments that will provide scientific-grade observations of signals-of-opportunity across the HF bands from volunteer citizen observers as part of the NSF Distributed Array of Small Instruments (DASI) program. A performance-driven PSWS design (~US$500) will be a modular, multi-instrument device that will consist of a dual-channel phase-locked 0.1-60 MHz software defined radio (SDR) receiver, a ground magnetometer with (~10 nT resolution and 1-sec cadence), and GPS/GNSS receiver to provide precision time stamping and serve as a GPS disciplined oscillator (GPSDO) to provide stability to the SDR receiver. A low-cost PSWS (\< US$100) that measures Doppler shift of HF signals received from standards stations such as WWV (US) and CHU (Canada) and includes a magnetometer is also being developed. HF sounding algorithms making use of signals of opportunity will be developed for the SDR-based PSWS. All measurements will be collected into a central database for coordinated analysis and made available for public access.

}, author = {Nathaniel A. Frissell and Dev Joshi and Veronica I. Romanek and Kristina V. Collins and Aidan Montare and David Kazdan and John Gibbons and William D. Engelke and Travis Atkison and Hyomin Kim and Scott H. Cowling and Thomas C. McDermott and John Ackermann and David Witten and Julius Madey and H. Ward Silver and William Liles and Steven Cerwin and Philip J. Erickson and Ethan S. Miller and Juha Vierinen} } @conference {539, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in a WWV Signal Received with a Network of Low-Cost HamSCI Personal Space Weather Stations}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are quasi-periodic variations in ionospheric electron density that are often associated with atmospheric gravity waves. TIDs cause amplitude and frequency variations in high frequency (HF, 3-30 MHz) refracted radio waves. We present observations of TIDs made with a network of Ham Radio Science Citizen Investigation (HamSCI) Low-Cost Personal Space Weather Stations (PSWS) with nodes located in Pennsylvania, New Jersey, and Ohio. The TIDs were detected in the Doppler shifted carrier of the received signal from the 10 MHz WWV frequency and time standard station in Fort Collins, CO. Using a lagged cross correlation analysis, we demonstrate a method for determining TID wavelength, direction, and period using the collected WWV HF Doppler shifted data.

}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Dev Joshi and William Liles and Clair Trop and Kristina Collins and Gareth Perry} } @conference {545, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in a WWV Signal Received with a Network of Low-Cost HamSCI Personal Space Weather Stations}, booktitle = {Annual (Summer) Eastern Conference}, year = {2021}, month = {07/2021}, publisher = {Society of Amateur Radio Astronomers (SARA)}, organization = {Society of Amateur Radio Astronomers (SARA)}, address = {Virtual}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are quasi-periodic variations in ionospheric electron density that are often associated with atmospheric gravity waves. TIDs cause amplitude and frequency variations in high frequency (HF, 3-30 MHz) refracted radio waves. One way to detect TIDs is through the use of a Grape Personal Space Weather Station (PSWS). The Grape PSWS successfully detected TIDs in the Doppler shifted carrier of the received signal from the 10 MHz WWV frequency and time standard station in Fort Collins, CO. This paper will present an explanation of how the Grape PSWS was used to collect data, and how scientist can use this data to further investigate the ionosphere.

}, url = {https://rasdr.org/store/books/books/journals/proceedings-of-annual-conference}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Dev Raj Joshi and William Liles and Claire C. Trop and Kristina V. Collins and Gareth W. Perry} } @proceedings {478, title = {A Survey of HF Doppler TID Signatures Observed Using a Grape in New Jersey}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, url = {https://hamsci2021-uscranton.ipostersessions.com/?s=6A-B6-94-74-A1-46-CF-D2-AC-BA-F3-58-2E-71-17-97}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Dev Joshi and William Liles and Kristina Collins and John Gibbons and David Kazdan} } @proceedings {494, title = {W3USR and The Great Collegiate Shortwave Listening Contest}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, url = {https://hamsci2021-uscranton.ipostersessions.com/Default.aspx?s=1B-12-5C-9B-5C-AF-F5-8B-AC-62-CD-DD-D5-51-6A-9A}, author = {M. Shaaf Sarwar and Veronica I. Romanek and Thomas Baran and Jonathan Rizzo and Steve Holguin and Jonathan Rizzo and Nathaniel A. Frissell and William Liles and Kristina Collins and David Kazdan} }