@conference {295, title = {High Frequency Communications Response to Solar Activity in September 2017 as Observed by Amateur Radio Networks}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

Numerous solar flares and coronal mass ejection-induced interplanetary shocks associated with solar active region AR12673 caused disturbances to terrestrial high-frequency (HF, 3{\textendash}30 MHz) radio communications from 4{\textendash}14 September 2017. Simultaneously, Hurricanes Irma and Jose caused significant damage to the Caribbean Islands and parts of Florida. The coincidental timing of both the space weather activity and hurricanes was unfortunate, as HF radio was needed for emergency communications. This paper presents the response of HF amateur radio propagation as observed by the Reverse Beacon Network and the Weak Signal Propagation Reporting Network to the space weather events of that period. Distributed data coverage from these dense sources provided a unique mix of global and regional coverage of ionospheric response and recovery that revealed several features of storm time HF propagation dynamics. X-class flares on 6, 7, and 10 September caused acute radio blackouts during the day in the Caribbean with recovery times of tens of minutes to hours, based on the decay time of the flare. A severe geomagnetic storm with Kpmax = 8+ and SYM-Hmin = -146 nT occurring 7{\textendash}10 September wiped out ionospheric communications first on 14 MHz and then on 7 MHz starting at \~{}1200 UT 8 September. This storm, combined with affects from additional flare and geomagnetic activity, contributed to a significant suppression of effective HF propagation bands both globally and in the Caribbean for a period of 12 to 15 days.

}, author = {Nathaniel A. Frissell and Joshua S. Vega and Evan Markowitz and Andrew J. Gerrard and William D. Engelke and Philip J. Erickson and Ethan S. Miller and R. Carl Luetzelschwab and Jacob Bortnik} } @conference {361, title = {Large Scale Traveling Ionospheric Disturbances Observed using HamSCI Amateur Radio, SuperDARN, and GNSS TEC}, booktitle = {American Geophysical Union Fall Meeting}, year = {2019}, month = {12/2019}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco, CA}, abstract = {

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are quasi-periodic variations in F region electron density with horizontal wavelengths \> 1000 km and periods between 30 to 180 min. On 3 November 2017, LSTID signatures were detected in observations made by Reverse Beacon Network (RBN) and the Weak Signal Propagation Reporting Network (WSPRNet) for the first time. The RBN and WSPRNet are two large-scale High Frequency (HF, 3-30 MHz) amateur (ham) radio observing networks that provide data to the Ham Radio Science Citizen Investigation (HamSCI). The LSTIDs were observed on the 7 and 14 MHz amateur radio bands, and are detected by observing changes in average propagation path length with time. LSTID period lengthened from T ~ 1.5 hr at 12 UT to T ~ 2.25 hr by 21 UT. Simultaneous LSTID signatures were present in ham radio observations over the continental United States, the Atlantic Ocean, and Europe. LSTIDs observed with amateur radio were consistent with LSTIDs observed by the Blackstone SuperDARN HF radar and in differential GNSS Total Electron Content (TEC) measurements. GNSS TEC maps were used to estimate LSTID parameters: horizontal wavelength 1100 km, phase velocity 950 km/hr, period 70 min, and propagation azimuth 135{\textdegree}. The LSTID signatures were observed throughout the day following ~800 nT surges in the Auroral Electrojet (AE) index at 00 and 12 UT. We will discuss potential generation hypotheses for the observed LSTIDs, including atmospheric gravity wave (AGW) sources triggered by auroral electrojet intensifications and associated Joule heating.

}, url = {https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/581488}, author = {Nathaniel A. Frissell and Diego F. Sanchez and Evan Markowitz and Gareth W. Perry and William D. Engelke and Anthea Coster and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker} } @conference {309, title = {Web-Based Scientific Visualizations of RBN/WSPR Data (Demonstration)}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, author = {Nathaniel A. Frissell and Evan Markowitz and Diego Sanchez and William D. Engelke} }