TY - JOUR T1 - Heliophysics and amateur radio: citizen science collaborations for atmospheric, ionospheric, and space physics research and operations JF - Frontiers in Astronomy and Space Sciences Y1 - 2023 A1 - Frissell, Nathaniel A. A1 - Ackermann, John R. A1 - Alexander, Jesse N. A1 - Benedict, Robert L. A1 - Blackwell, William C. A1 - Boedicker, Rachel K. A1 - Cerwin, Stephen A. A1 - Collins, Kristina V. A1 - Cowling, Scott H. A1 - Deacon, Chris A1 - Diehl, Devin M. A1 - Di Mare, Francesca A1 - Duffy, Timothy J. A1 - Edson, Laura Brandt A1 - Engelke, William D. A1 - Farmer, James O. A1 - Frissell, Rachel M. A1 - Gerzoff, Robert B. A1 - Gibbons, John A1 - Griffiths, Gwyn A1 - Holm, Sverre A1 - Howell, Frank M. A1 - Kaeppler, Stephen R. A1 - Kavanagh, George A1 - Kazdan, David A1 - Kim, Hyomin A1 - Larsen, David R. A1 - Ledvina, Vincent E. A1 - Liles, William A1 - Lo, Sam A1 - Lombardi, Michael A. A1 - MacDonald, Elizabeth A. A1 - Madey, Julius A1 - McDermott, Thomas C. A1 - McGaw, David G. A1 - McGwier, Robert W. A1 - Mikitin, Gary A. A1 - Miller, Ethan S. A1 - Mitchell, Cathryn A1 - Montare, Aidan A1 - Nguyen, Cuong D. A1 - Nordberg, Peter N. A1 - Perry, Gareth W. A1 - Piccini, Gerard N. A1 - Pozerski, Stanley W. A1 - Reif, Robert H. A1 - Rizzo, Jonathan D. A1 - Robinett, Robert S. A1 - Romanek, Veronica I. A1 - Sami, Simal A1 - Sanchez, Diego F. A1 - Sarwar, Muhammad Shaaf A1 - Schwartz, Jay A. A1 - Serra, H. Lawrence A1 - Silver, H. Ward A1 - Skov, Tamitha Mulligan A1 - Swartz, David A. A1 - Themens, David R. A1 - Tholley, Francis H. A1 - West, Mary Lou A1 - Wilcox, Ronald C. A1 - Witten, David A1 - Witvliet, Ben A. A1 - Yadav, Nisha AB -

The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities.

VL - 10 UR - https://www.frontiersin.org/articles/10.3389/fspas.2023.1184171/fullhttps://www.frontiersin.org/articles/10.3389/fspas.2023.1184171/full JO - Front. Astron. Space Sci. ER - TY - JOUR T1 - Rapid and Accurate Measurement of Polarization and Fading of Weak VHF Signals Obliquely Reflected from Sporadic-E Layers JF - IEEE Transactions on Antennas and Propagation Y1 - 2020 A1 - Chris Deacon A1 - Witvliet, Ben A. A1 - Cathryn Mitchell A1 - Simon Steendam KW - Brewster angle KW - ionosphere KW - radio noise KW - Radio wave propagation KW - VHF AB -

In the E-region of the ionosphere, at heights between 90 and 130 km, thin patches of enhanced ionization occur intermittently. The electron density in these sporadic-E (Es) clouds can sometimes be so high that radio waves with frequencies up to 150 MHz are obliquely reflected. While this phenomenon is well known, the reflection mechanism itself is not well understood. To investigate this question, an experimental system has been developed for accurate polarimetric and fading measurements of 50 MHz radio waves obliquely reflected by mid-latitude Es layers. The overall sensitivity of the system is optimized by reducing environmental electromagnetic noise, giving the ability to observe weak, short-lived 50 MHz Es propagation events. The effect of the ground reflection on observed polarization is analyzed and the induced amplitude and phase biases are compensated for. It is found that accurate measurements are only possible below the pseudo-Brewster angle. To demonstrate the effectiveness of the system, initial empirical results are presented which provide clear evidence of magneto-ionic double refraction.

UR - https://researchportal.bath.ac.uk/en/publications/rapid-and-accurate-measurement-of-polarization-and-fading-of-weak ER -