TY - Generic T1 - Possible Drivers of Large Scale Traveling Ionospheric Disturbances by Analysis of Aggregated Ham Radio Contacts T2 - HamSCI Workshop 2024 Y1 - 2024 A1 - Diego Sanchez A1 - Mary Lou West A1 - Nathaniel A. Frissell A1 - Gareth W. Perry A1 - William D. Engelke A1 - Robert B. Gerzoff A1 - Philip J. Erickson A1 - J. Michael Ruohoniemi A1 - Joseph B. H. Baker A1 - V. Lynn Harvey AB -

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are quasiperiodic electron density perturbations of the F region ionosphere that have periods of 30 min to over 180 min, wavelengths of over 1000 km, and velocities of 150 to 1000 m/s. These are seen as long slow oscillations in the bottom side of the ionosphere in data from ham radio contacts at 20 meters wavelength on roughly a third of the days in a year. They might be triggered by electromagnetic forces from above, and/or by mechanical pressures from below. The explosion of the Tonga volcano on January 15, 2022 revealed that such a LSTID could be triggered by a violent updraft from the Earth’s surface into the stratosphere and then detected in the ionosphere over the United States nine hours later. We consider other possible drivers such as the auroral electrojet, the polar vortex, thunderstorms, zonal wind speeds, gravity wave variances, and their time derivatives in 2017.

JF - HamSCI Workshop 2024 PB - HamSCI CY - Cleveland, OH ER - TY - Generic T1 - Climatology of Large Scale Traveling Ionospheric Disturbances Observed with Amateur Radio Networks T2 - HamSCI Workshop 2023 Y1 - 2023 A1 - Diego Sanchez A1 - Mary Lou West A1 - Bob Gerzoff A1 - Gareth W. Perry A1 - Nathaniel A. Frissell A1 - William D. Engelke A1 - Philip J. Erickson AB -

A new climatology of Large Scale Traveling Ionospheric Disturbances (LSTIDs) has been observed from ham radio data in 2017. LSTIDs are quasiperiodic electron density perturbations of the F region ionosphere. LSTIDs have periods of 30 min to over 180 min, wavelengths of over 1000 km, and velocities of over 1400 km/hr. In this paper, we show a climatology of observed LSTID events using data from the Reverse Beacon Network (RBN), Weak Signal Propagation Network (WSPRNet), and PSKReporter amateur radio networks. This climatology was performed twice and was cross examined between two members of the research team. Results show that most of the observed LSTIDs occurred during the winter months with a decline towards the summer, with the exception of a spike in June. This paper provides additional insight into the seasonal trends of LSTIDs and provides additional knowledge that will help in the pursuit of what is causing this phenomenon.

JF - HamSCI Workshop 2023 PB - HamSCI CY - Scranton, PA ER - TY - Generic T1 - Galactic Study of the Milky Way Galaxy Using Cold Hydrogen Data T2 - HamSCI Workshop 2023 Y1 - 2023 A1 - Muhammad Shaaf Sarwar A1 - Mary Lou West A1 - Richard Russel A1 - Nathaniel A. Frissell AB -

Radio waves offer a wide variety of opportunities for studying astronomical phenomena. This presentation is concerned with the study of cold Hydrogen H1 waves received from the Milky Way galaxy. The H1 lines are 21-cm radio waves that are produced as a result of the Hydrogen Spin flip phenomenon. The H1 data is received from the Society of Amateur Radio Astronomers (SARA) and processed to produce 6000 unique data points to conduct the galactic survey. The galactic survey consists of a heat map that shows the movement of the galaxy across the sky. The survey also consists of velocity plots which are produced in galactic coordinates to show the movement of the galactic arms across the galactic plane. The analysis of the velocity plots will allow an estimation of the galactic mass and further explore the discrepancy between observed mass and actual mass. 

JF - HamSCI Workshop 2023 PB - HamSCI CY - Scranton, PA ER - TY - Generic T1 - Medium Scale Traveling Ionospheric Disturbances and their Connection to the Lower and Middle Atmosphere T2 - HamSCI Workshop 2023 Y1 - 2023 A1 - Nathaniel A. Frissell A1 - Francis Tholley A1 - V. Lynn Harvey A1 - Sophie R. Phillips A1 - Katrina Bossert A1 - Sevag Derghazarian A1 - Larisa Goncharenko A1 - Richard Collins A1 - Mary Lou West A1 - Diego F. Sanchez A1 - Gareth W. Perry A1 - Robert B. Gerzoff A1 - Philip J. Erickson A1 - William D. Engelke A1 - Nicholas Callahan A1 - Lucas Underbakke A1 - Travis Atkison A1 - J. Michael Ruohoniemi A1 - Joseph B. H. Baker JF - HamSCI Workshop 2023 PB - HamSCI CY - Scranton, PA ER - TY - JOUR T1 - Amateur Radio: An Integral Tool for Atmospheric, Ionospheric, and Space Physics Research and Operations JF - White Paper Submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033 Y1 - 2022 A1 - Nathaniel A. Frissell A1 - Laura Brandt A1 - Stephen A. Cerwin A1 - Kristina V. Collins A1 - David Kazdan A1 - John Gibbons A1 - William D. Engelke A1 - Rachel M. Frissell A1 - Robert B. Gerzoff A1 - Stephen R. Kaeppler A1 - Vincent Ledvina A1 - William Liles A1 - Michael Lombardi A1 - Elizabeth MacDonald A1 - Francesca Di Mare A1 - Ethan S. Miller A1 - Gareth W. Perry A1 - Jonathan D. Rizzo A1 - Diego F. Sanchez A1 - H. Lawrence Serra A1 - H. Ward Silver A1 - David R. Themens A1 - Mary Lou West ER - TY - JOUR T1 - Fostering Collaborations with the Amateur Radio Community JF - White Paper Submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033 Y1 - 2022 A1 - Nathaniel A. Frissell A1 - Laura Brandt A1 - Stephen A. Cerwin A1 - Kristina V. Collins A1 - Timothy J. Duffy A1 - David Kazdan A1 - John Gibbons A1 - William D. Engelke A1 - Rachel M. Frissell A1 - Robert B. Gerzoff A1 - Stephen R. Kaeppler A1 - Vincent Ledvina A1 - William Liles A1 - Elizabeth MacDonald A1 - Gareth W. Perry A1 - Jonathan D. Rizzo A1 - Diego F. Sanchez A1 - H. Lawrence Serra A1 - H. Ward Silver A1 - Tamitha Mulligan Skov A1 - Mary Lou West ER - TY - Generic T1 - Opportunities for Research and Education with a Small Radio Telescope T2 - HamSCI Workshop 2022 Y1 - 2022 A1 - M. Shaaf Sarwar A1 - Nathaniel A. Frissell A1 - Mary Lou West A1 - Richard Russell AB -

A small radio telescope offers a wide range of opportunities for students and educators to explore the vast universe through radio waves. The incoming radio waves are slightly shifted due to the Doppler effect and the phenomenon is utilized to determine the speeds of target objects.  This survey serves as a good introduction to Radio Astronomy and understanding the structure of the Milky Way. Using the knowledge and understanding of the galactic survey, further experiments can be conducted.

JF - HamSCI Workshop 2022 PB - HamSCI CY - Huntsville, AL ER - TY - Generic T1 - An Overview of Oblique Soundings from Chirp Ionosondes T2 - HamSCI Workshop 2022 Y1 - 2022 A1 - Simal Sami A1 - Nathaniel A. Frissell A1 - Mary Lou West A1 - Dev Raj Joshi A1 - Juha Vierinen AB -

An ionospheric sounder, typically known as an ionosonde, is a radar device which is used to make observations of the ionized layer of the Earth’s upper atmosphere known as the ionosphere. The ionosonde works by transmitting high frequency (HF, 3-30 MHz) radio waves and observing the time delay of the ionospheric echoes. Ionosondes play an especially crucial role in our understanding both ionospheric dynamics and how radio wave propagation is impacted by the ionosphere. The data from an ionosonde is displayed in a type of plot known as an ionogram. A chirp ionosonde is a type of ionospheric sounder that produces ionograms by transmitting an HF signal that changes linearly in frequency with time. Conventional chirp ionosondes are used in a vertical sounding mode, in which signals are transmitted directly up to the ionosphere. This allows for measurements of electron density as a function of height for the bottomside ionosphere. Chirp ionosondes may also be used in an oblique sounding configuration, in which the transmitter and receiver are separated by a significant geographic distance. While the measurements of an oblique sounder are more complicated to interpret than a vertical sounder, a single transmitter can be used simultaneously by receivers in many different locations, thus allowing for a cost-effective increase in the number of ionospheric sampling points. The HamSCI Personal Space Weather Station plans to take advantage of this fact by using signals-of-opportunity from the global network of pre-existing chirp ionosonde transmitters. In this presentation, we give a brief overview of chirp ionosondes and their uses in studying ionospheric dynamics.

JF - HamSCI Workshop 2022 PB - HamSCI CY - Huntsville, AL ER - TY - CONF T1 - HamSCI Personal Space Weather: Architecture and Applications to Radio Astronomy T2 - Annual (Summer) Eastern Conference Y1 - 2021 A1 - Nathaniel A. Frissell A1 - Scott H. Cowling A1 - Thomas C. McDermott A1 - John Ackermann A1 - David Typinski A1 - William D. Engelke A1 - David R. Larsen A1 - David G. McGaw A1 - Hyomin Kim A1 - David M. Witten, II A1 - Julius M. Madey A1 - Kristina V. Collins A1 - John C. Gibbons A1 - David Kazdan A1 - Aidan Montare A1 - Dev Raj Joshi A1 - Veronica I. Romanek A1 - Cuong D. Nguyen A1 - Stephen A. Cerwin A1 - William Liles A1 - Jonathan D. Rizzo A1 - Ethan S. Miller A1 - Juha Vierinen A1 - Philip J. Erickson A1 - Mary Lou West AB -

The Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project is a citizen science initiative to develop a new modular set of ground-based instrumentation for the purpose of studying the structure and dynamics of the terrestrial ionosphere, as well as the larger, coupled geospace system. PSWS system instrumentation includes radio receivers sensitive to frequencies ranging from the very low frequency (VLF) through very high frequency (VHF) bands, a Global Navigation Satellite System (GNSS) receiver to provide Total Electron Content (TEC) measurements and serve as a precision time and frequency reference, and a ground magnetometer sensitive to ionospheric and geospace currents. Although the PSWS is designed primarily for space weather and space science, its modular and open design in both hardware and software allows for a variety of use cases. The core radio instrument of the PSWS, the TangerineSDR, is a wideband, direct sampling 100~kHz to 60~MHz field programmable gate array (FPGA)-based software defined radio (SDR) receiver with direct applicability to radio astronomy. In this paper, we describe the PSWS and TangerineSDR architecture, show examples of how the TangerineSDR could be used to observe Jovian decametric emission, and discuss the applicability of the TangerineSDR to radio astronomy in general.

JF - Annual (Summer) Eastern Conference PB - Society of Amateur Radio Astronomers (SARA) CY - Virtual UR - https://rasdr.org/store/books/books/journals/proceedings-of-annual-conference ER -