TY - CONF T1 - EclipseMob: Initial Planning for 2024 T2 - HamSCI Workshop Y1 - 2020 A1 - K. C. Kerby-Patel A1 - L. Lukes A1 - J. Nelson A1 - W. Liles AB -

During the lead up to the 2017 Solar Eclipse and its aftermath, the EclipseMob team learned many things about crowdsourcing technology development and data collection. We are taking those lessons along with lessons learned from other crowdsourced citizen science programs to improve the EclipseMob experience for the upcoming 2024 Solar Eclipse. One such lesson is to start planning, building, and recruiting much earlier, and we are. EclipseMob is on schedule to finalize the design and testing of a new receiver system this summer. The 2017 Solar Eclipse collection platform relied on participants’ personal smartphones, which supplied the analog to digital converter (ADC), local oscillator, time, location, web access, and computational power. Our platform for 2024 eliminates the need for a smartphone by using a Raspberry Pi (RPi), analog amplifier, ADC, and GPS, in a self‐contained unit. By eliminating the smartphone, the new design standardizes the hardware and increases economic accessibility. The 2024 platform is designed to collect WWVB signals at 60 kHz, as was the 2017 platform, but will also collect signals at lower frequencies such as the US Navy VLF transmitters. Those lower frequencies had to be ignored during the 2017 effort due to the limited bandwidth of the ADC in the smart phones. The construction process for the 2024 receiver kit has been heavily simplified, which we expect will result in increased participant success and satisfaction. In addition to modifying the data collection platform, 2024 EclipseMob is also changing its outreach approach. Instead of the centrally recruiting, training, and supporting participants, EclipseMob is switching to a train the trainer model. The EclipseMob team will work with and train a small subset of community leaders (from schools, libraries, ham radio clubs, etc.) to recruit and support participants locally. This should also increase the geospatial distribution of participants. In 2017 most participants were located in areas near the two main schools involved, which resulted in dense sampling in the Boston, MA and Fairfax, VA area. EclipseMob training materials will continue to meet the standards necessary for teacher continuing education credits and student learning.

JF - HamSCI Workshop PB - HamSCI CY - Scranton, PA ER - TY - CONF T1 - Plans for EclipseMob 2024 T2 - HamSCI Workshop 2019 Y1 - 2019 A1 - J. Ayala A1 - K. C. Kerby-Patel A1 - William Liles A1 - H. McElderry A1 - J. Nelson A1 - L. Lukes AB -

During the 2017 solar eclipse, the EclipseMob project conducted a collaborative effort to crowdsource a large-scale geographically distributed measurement of LF radio wave propagation. Do-it-yourself antenna and receiver kits were distributed to libraries, schools, and citizen scientists across the United States, paired with a smartphone app that provided data recording and software-defined radio functionality. While the data collection was ultimately not successful because of a problem with the receiver-smartphone interface, the EclipseMob crowdsourced measurement model still has the potential to make a valuable contribution to the study of the iono- sphere. The availability of low-cost electronic components and modern GPS-based location services presents an opportunity to coordinate nationwide radio measurements that can be performed by hobbyists, students, educators and other citizen scientists. At present, EclipseMob is actively planning for the 2024 eclipse in the eastern United States. The EclipseMob kit will be redesigned for the 2024 eclipse, both to address the previous kit’s issues and to accommodate recent changes in smartphone technology such as the elimination of the headphone jack on many newer phone models. EclipseMob also envisions a much larger data collection effort in 2024, so outreach, recruitment, and training efforts will need to be conducted on a much larger scale. This talk will discuss how we plan to address some of the logistical and outreach challenges faced by the new, expanded incarnation of EclipseMob.

JF - HamSCI Workshop 2019 PB - HamSCI CY - Cleveland, OH ER - TY - CONF T1 - Collaborative Use of Solar Eclipses to Study the Ionosphere T2 - HamSCI-UK Y1 - 2017 A1 - W. C. Liles A1 - C. N. Mitchell A1 - K. C. Kerby-Patel A1 - J. Nelson A1 - L. Lukes JF - HamSCI-UK PB - HamSCI-UK CY - Milton Keynes, UK ER - TY - CONF T1 - On the use of solar eclipses to study the ionosphere T2 - 15th International Ionospheric Effects Symposium IES2017 Y1 - 2017 A1 - W. Liles A1 - C. Mitchell A1 - M. Cohen A1 - G. Earle A1 - N. Frissell A1 - K. Kirby-Patel A1 - L. Lukes A1 - E. Miller A1 - M. Moses A1 - J. Nelson A1 - J. Rockway AB -

Exploring the effects of solar eclipses on radio wave propagation has been an active area of research since the first experiments conducted in 1912. In the first few decades of ionospheric physics, researchers started to explore the natural laboratory of the upper atmosphere. Solar eclipses offered a rare opportunity to undertake an active experiment. The results stimulated much scientific discussion.
Early users of radio noticed that propagation was different during night and day. A solar eclipse provided the opportunity to study this day/night effect with much sharper boundaries than at sunrise and sunset, when gradual changes occur along with temperature changes in the atmosphere and variations in the sun angle.
Plots of amplitude time series were hypothesized to indicate the recombination rates and re- ionization rates of the ionosphere during and after the eclipse, though not all time-amplitude plots showed the same curve shapes. A few studies used multiple receivers paired with one transmitter for one eclipse, with a 5:1 ratio as the upper bound. In these cases, the signal amplitude plots generated for data received from the five receive sites for one transmitter varied greatly in shape.

JF - 15th International Ionospheric Effects Symposium IES2017 CY - Alexandria, VA ER - TY - CONF T1 - VLF/LF and the 2017 Total Solar Eclipse T2 - Dayton Hamvention Y1 - 2017 A1 - William Liles A1 - L. Lukes A1 - J. Nelson A1 - K. Kerby-Patel AB -

Previous solar eclipse studies have observed different propagation effects at VLF/LF frequencies (3-300 kHz) compared with those observed at HF (3-30 MHz) frequencies. These differences are primarily due to the much longer wavelengths at lower frequencies in concert with ionospheric D layer interactions. To better understand the unusual eclipse-induced effects at VLF/LF frequencies, we present EclipseMob, a crowdsourced collection effort that will use smart phones as simple VLF/LF software defined radio (SDR) receivers to record changes in propagation from known transmitters during the 2017 Total Solar Eclipse.

JF - Dayton Hamvention CY - Xenia, OH ER -